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SOLUTIONS FOR ASSIGNMENT #8

Reading Assignments:
Sections 4.3, 4.4, 4.6, and 4.7 of Peskin and Schroeder.

Problem 1
Consider the scalar Yukawa theory we discussed in class

L =

∫
d4x

1

2
(∂µφ∂

µφ)− 1

2
m2
φφ

2 + ∂µψ
†∂µψ −m2

ψψ
†ψ − gψ†ψφ

In the interaction picture, the quantum field is written in the same way as the free field

φ(x) =

∫
d3k

(2π)3
√

2ωk

(
ake

−ik·x + a†ke
ik·x
)
, ψ(x) =

∫
d3k

(2π)3
√

2ωk

(
bke

−ik·x + c†ke
ik·x
)
.

Furthermore, define the amplitude A of a particular process as

〈f |S − 1|i〉 = iA (2π)4δ(4)

(∑
i

ki −
∑
f

kf

)
.

(a) Derive the following Wick contractions for the complex scalar ψ:

ψ†(x)ψ†(y) = 0, ψ(x)ψ(y) = 0, ψ†(x)ψ(y) =

∫
d4k

(2π)4

i

k2 −m2
ψ + iε

e−ik·(x−y).

(b) Compute iA in the centre-of-mass frame for the scattering process ψ(k1) + ψ†(k2) →
ψ(p1) + ψ†(p2) using Dyson’s formula. (Do not use any Feynman rules here!)
(c) Draw the relevant Feynman diagram(s) for the process in (b). Then use Feynman rules
to re-derive your answer in (b).
(d) Compute iA in the centre-of-mass frame for the scattering process ψ(k1) + φ(k2) →
ψ(p1) + φ(p2) using Dyson’s formula. (Do not use any Feynman rules here!)
(e) Draw the relevant Feynman diagram(s) for the process in (d). Then use Feynman rules
to re-derive your answer in (d).
(f) Compute iA in the centre-of-mass frame for the scattering process ψ(k1) + ψ†(k2) →
φ(p1) + φ(p2) using Dyson’s formula. (Do not use any Feynman rules here!)
(g) Draw the relevant Feynman diagram(s) for the process in (f). Then use Feynman rules
to re-derive your answer in (f).
(h) Assuming mψ < mφ, what is the minimal velocity of ψ in the centre-of-mass frame in
order for the process in (f) to occur?
(i) Compute iA in the centre-of-mass frame for the decay process φ(k) → ψ(p1) + ψ†(p2)
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using Dyson’s formula. (Do not use any Feynman rules here!)
(j) Draw the relevant Feynman diagram(s) for the process in (i). Then use Feynman rules
to re-derive your answer in (i).
(k) Can the process in (i) occur for arbitrary masses mφ and mψ?
(l) Can the process ψ(k1) + ψ(k2) → ψ†(p1) + ψ†(p2) occur? Why or why not?
(m) Compute iA for the scattering process φ(k1) + φ(k2) → φ(p1) + φ(p2) using Dyson’s
formula. You don’t have to evaluate any leftover d4k integral in the amplitude. (Do not use
any Feynman rules here!)
(n) Draw the relevant Feynman diagram(s) for the process in (m). Then use Feynman rules
to re-derive your answer in (m).
Solution:
(a) Using

ψ(x)ψ(y) = 〈0|T (ψ(x)ψ(y))|0〉

as well as the commutation relations (of either the fields or the creation/annihilation oper-
ators) it is easy to prove the desired.
(b) The amplitude is

iA = −ig2

[
1

(k1 + k1)2 −m2
φ + iε

+
1

(p1 − k1)2 −m2
φ + iε

]
.

In the C.M. frame k1 = (Ec.m./2, ~k), k2 = (Ec.m./2,−~k), p1 = (Ec.m./2, ~p), and p2 =

(Ec.m./2,−~p), where Ec.m. = m2
ψ + |~k|2. Energy conservation requires |~k| = |~p|. Also let

us define cos θ = ~k · ~p/(|~k||~p|). Then (k1 + k2)
2 = E2

c.m. and (p1 − k1)
2 = −2|~k|2(1 − cos θ).

Therefore

iA = −ig2

[
1

E2
c.m. −m2

φ

− 1

2|~k|2(1− cos θ) +m2
φ + iε

]
.

(c) You should draw a t-channel and a s-channel diagram.
(d) The amplitude is

iA = −ig2

[
1

(k1 + k1)2 −m2
ψ + iε

+
1

(p2 − k1)2 −m2
ψ + iε

]
.

In this case, |~k| = |~p|, (k1 + k2)
2 = E2

c.m. =

(√
m2
φ + |~k|2 +

√
m2
ψ + |~k|2

)2

, and (p2− k1)
2 =

m2
φ +m2

ψ − 2|~k|2 cos θ − 2
√

(m2
φ + |~k|2)(m2

ψ + |~k|2).
(e) Same as (c).
(f) The amplitude is

iA = −ig2

[
1

(p1 − k1)2 −m2
φ + iε

+
1

(p2 − k1)2 −m2
φ + iε

]
.

Here the constraint on the three-momenta is Ec.m./2 = m2
ψ + |~k|2 = m2

φ + |~p|2. Then

(p1 − k1)
2 = −|~p− ~k|2 and (p1 − k1)

2 = −|~p+ ~k|2.
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(g) You should draw a t-channel and a u-channel diagram.

(h) Energy conservation requires m2
ψ + |~k|2 = m2

φ+ |~p|2, so the minimal velocity must satisfy

m2
ψv

2
min

1− v2
min

+m2
ψ ≥ m2

φ,

which implies vmin ≥
√

1−m2
ψ/m

2
φ.

(i) The amplitude is iA = −ig.
(j) Same as (i).
(k) We must have mφ ≥ 2mψ in order to conserve energy and momentum.
(l) This process cannot occur because the interaction vertex ψ†ψφ conserves a U(1) global
symmetry under which ψ carries +1 charge and ψ† carries −1 charge. The process ψ(k1) +
ψ(k2) → ψ†(p1) + ψ†(p2) violates this global symmetry and cannot occur at any order in
perturbation theory.
(m) We need to work out the number of inequivalent contractions in the time-ordered product

(ig)4

4!
〈φ(p1), φ(p2)|T (ψ†

1ψ1φ1 ψ
†
2ψ2φ2 ψ

†
3ψ3φ3 ψ

†
4ψ4φ4)|φ(k1), φ(k2)〉.

There are 4! ways to contract the φ-field in the four different interaction vertices with the
four different external particles, which will cancel the 4! coming from expanding the time-
ordered Dyson series up to the fourth order. After the φ contraction, we need to contract ψ†

with ψ. Let’s assume for now the contraction with the external particles is fixed, i.e. each
φ field is contracted with an external particle, then one example of non-trivial contractions
of the ψ field is

(1234) ≡ ψ†
1ψ1ψ

†
2ψ2ψ

†
3ψ3ψ

†
4ψ4.

There are a total of six distinct ways to contract the ψ fields which would give non-trivial
contributions to the scattering process. They are (1234), (1243), (1324), (1342), (1423), and
(1432), resulting in three different amplitudes

iA = i2g4

∫
d4k

(2π)2

1

(k2 −m2
ψ + iε)((k + k1)2 −m2

ψ + iε)

×

[
1

((k + k1 + k2)2 −m2
ψ + iε)((k + p1)2 −m2

ψ + iε)

+
1

((k + k1 + k2)2 −m2
ψ + iε)((k + p2)2 −m2

ψ + iε)

+
1

((k + k1 − p2)2 −m2
ψ + iε)((k + p2)2 −m2

ψ + iε)

]
.

Another way to count these six contractions is from the fact that all four external particles
are identical, and they are grouped into two groups of incoming and outgoing particles. So
there are 4!/(2!2!) = 6 different permutations.
(n) It is straightforward to draw these six diagrams.
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